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Abstract—In this paper a problem of steady state fully developed heat transfer in laminar flow of
constant physical properties in a curved tube, effected by a heat source (or sink} distribution present
in wall material, has been considered. Thermal boundary conditions have been discussed for a curved tube
of circular cross-section, taking into consideration the heat generation due to viscous dissipation. A
perturbation analysis has been carried out for those situations in which the normal temperature gradient
at the inner wall surface is regarded as prescribed and constant circumferentially. Solutions for average
Nusselt number and the rate of change of fluid temperature in the main flow direction have been obtained
and discussed. Effects of viscous dissipation phenomenon on these quantities have been investigated. In the
discussions, curved and straight duct cases have been compared.

NOMENCLATURE
a, cross-sectional radius, Fig. 1;
b, radius of curvature, Fig. 1;
Cps specific heat at constant pressure;
K, coefficient of thermal conductivity;
Nu, Nusselt number;
P, Prandtl number;
F,a,0, co-ordinate system, Fig. 1;
R, Reynolds number, based on longitudinal
pressure gradient;
T, local temperature;
U,V,W, velocity components in directions of
increasing 7, «, 8 respectively;
p,u, density and coefficient of viscosity
respectively;
A, a/b.
Subscripts
a, mean value along cross-sectional boundary;
m, mean value over cross-sectional domain;
0, straight duct case with same cross-sectional
radius, longitudinal pressure gradient and
wall normal temperature gradient as in
curved duct;
w, value at solid-fluid interface.
1. INTRODUCTION
1.1

DEeaN [1,2] initiated theoretical studies of flows of
fluids in curved tubes. Heat-transfer problems asso-
ciated with such flows constitute a modern area of
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research. The following problem is of both engineering
and academic interest.

1.2 Physical problem

A Newtonian fluid flows through a curved tube of
circular cross:section. The flow is laminar. The wall
material (but not the fluid) contains a uniform heat
source (or sink) distribution. Both velocity and
temperature fields are fully developed and steady. The
following conditions (which are usual assumptions) are
satisfied.

(i) Area of cross-section and radius of curvature
remain constant in longitudinal direction.
(ii) Variations of physical properties are negligible.
(ili) Secondary free convection effects are negligible.

1.3

When the conditions (ii) and (iii) are satisfied, viscous
dissipation may be non-negligible. This point has been
discussed, on the basis of the dynamical similarity
principle,in [3,4]. In these and in [ 5], all of which have
dealt with the above physical problem for straight

—
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ducts, qualitatively interesting and quantitatively signi-
ficant effects of viscous dissipation have been reported.
The effects of this physical phenomenon in a curved
duct should necessarily be different from those in a
straight duct, since the velocity distribution in one is
quantitatively and qualitatively different from that in
the other. Therefore, it is of interest to know how
these effects are altered when one proceeds from the
straight to the curved shape.

It may be said that the heat generation due to
viscous dissipation is considerable in fast laminar flow
through narrow tube (such tube flows are found in
compact heat exchangers), and also considerable in
highly viscous flows (e.g. flows of oils).

14

For the thermally fully developed flow region, it is
simple to conclude (both for curved and straight ducts)
that in the longitudinal direction the normal tempera-
ture gradient at the solid—fluid interface remains
constant and the temperature at this interface and
within the flowing medium varies linearly at a fixed
rate. The following discussion draws the remaining
picture of thermal boundary conditions.

Inacurved tube of circular cross-section, the velocity
distribution and the viscous dissipation are circum-
ferentially non-uniform. These, therefore, allow the
normal temperature gradient to vary around the cross-
sectional boundary, and allow a non-uniform circum-
ferential temperature gradient to exist in the wall
material. The latter, in turn, can give rise to the process
of conduction in the solid material. Consequently,
involvement of the wall thermal conductivity can occur
in prescribing the thermal boundary condition circum-
ferentially. In this event, although the cross-sectional
boundary is circular and the wall heat source (sink)
distribution is uniform, the problem becomes quite
complicated. The situations in which the said involve-
ment is either absent or insignificant are described
below.

Let the coefficient of thermal conductivity of the wall
be infinite (i.e. very large). This makes the circum-
ferential temperature differences in wall material (but
not the variation of normal temperature gradient along
cross-sectional boundary) to disappear. Thus the pre-
scribed thermal boundary condition is (A4): solid—fluid
interface temperature is constant and varies linearly in
circumferential and longitudinal directions respec-
tively. A similar situation, where (A4) is prescribed, is
that of wall of infinite (i.e. of very large) thickness. It
may be said that if both thermal conductivity coefficient
and thickness of wall are large, the boundary condition
is prescribed as (A4) approximately.

On the other hand, let the coefficient of thermal
conductivity of wall be zero (i.e. very small). In this

situation, heat flow is not allowed to take place in the
wall material. Obviously, wall heat source (sink) distri-
bution can exist only in the inner surface. In case of
heat source, the heat generated in each element of inner
surface of wall will totally flow in the normal direction
to the adjacent fluid. The reverse of this will occur in the
case of heat sink. Therefore, it is the normal temperature
gradient, not the temperature, which is prescribed along
cross-sectional boundary. Thus when wall heat source
(sink) distribution is uniform, the solid-fluid interface
temperature continues to be circumferentially non-
uniform, and the prescribed thermal boundary condi-
tion is (B): normal temperature gradient at solid-fluid
interface is constant in both circumferential and
longitudinal directions. A similar situation, where (B)
is prescribed, is that of wall of very small thickness. It
may be stated that if both thermal conductivity
coefficient and thickness of wall are small, the pre-
scribed boundary condition is nearly as in (B).

In the case of straight duct of circular cross-section,
both velocity distribution and viscous dissipation are
circumferentially constant. Therefore, when wall heat
source (sink) distribution is constant, there are only
two boundary conditions, namely, (4) and (B) which
are satisfied simultaneously (i.e. if (4) is prescribed (B)
holds good and vice versa).

To summarize, there is a marked distinction between
thermal boundary condition cases of straight and
curved tubes when the cross-sections of both are
circular. Such a distinction exists between the cases of
straight ducts of circular and non-circular cross-
sections discussed in [6,7]. It is of interest to note that
the cases of straight duct of non-circular cross-section
and curved duct of circular cross-section are analogous
as far as thermal boundary conditions are concerned.
1.5

The theoretical papers which have specifically dealt
with the problem stated in Section 1.2 are: Mori and
Nakayama [8], Ozisik and Topakoglu [9], Akiyama
and Cheng [10] and Kalb and Seader [11]. In each
of these papers, only the boundary condition (A4) has
been considered, and the viscous dissipation has not
been taken into account. The first two papers, [8,9],
contain analytical studies, viz. boundary layer and
second order perturbation analyses for large and small
Dean number values respectively. The remaining two
[10, 11], are numerical studies, where the Dean number
values not considered in [8,9] have also been dealt with.

Herein, the case of the boundary condition (B) is
analyzed by taking viscous dissipation into considera-
tion.

2. ANALYSIS
2.1

The following energy equation may be considered
with regard to the temperature distribution in the
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problem stated in Section 1.2:
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where the terms involving u are due to viscous
dissipation.
The boundary condition (B) may be stated mathe-
matically as
oT

== B at solid—fluid interface 2)
;

where § is constant and is positive (negative) if wall
contains heat source (sink) distribution.

Dean in his beautiful work [2] introduced a set of
rules to simplify equations of motion and continuity.
The resulting equations are approximate (see (A.1) to
(A4) in the Appendix). Any result based on those
equations suffers from insignificant error when
(a/b) = A« 1; which is supported by experimental
studies [12,13]. Dean [2] solved the approximate
equations by a perturbation method and reported a
second order solution for velocity distribution. In [2],
the qualitative predictions based on the second order
perturbation solution are physically consistent. Dean’s
analysis [2] has been extended to various hydro-
dynamic problems in curved tubes, viz. non-Newtonian
flows [14]; dispersion of a solute in fluid flow [15],
etc.

An analysis similar to that in [2] is carried out for
(1) and (2).

According to Dean’s simplification rules [2], it is
required to replace

b+Fcosa by b 3
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in (1) and also to take care that if terms like
(OW/0F) { W cos a/(b+ Fcos )} are being neglected then
terms of same order like (V/F)(0V/0F) are also to be

neglected. As a result, (1) reduces to the following very
simple form:
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Equations (5) and (2) are transformed to following
dimensionless forms:

1 a(¢ t) cw ) 1ow )
v —P<r6(a " W'") B[( o +(, o) |©
% =1 at solid—fluid interface N

where V2 is Laplacian operator in (r,«); first term in
the coefficient of P involves Jacobian notation; and

m%@ﬁ@?%w
t=Ta—ﬂT,,,’ (10)

Last two equations of (8) define secondary flow stream
function ¢(r,«). In (9), M is independent of 7, and 8.
The dimensionless temperature difference ¢, which is
defined by (10), is independent of 6. It may be noted
that the definition (10) is specifically appropriate for
the case of boundary condition (B).

While solving (6) under (7), the relations:

tn="0 (12)
and

t# 00 (13)

are to be used in order to obtain bounded unique
solution for ¢, where (12) is derived from (10), and
(13) means that the temperature in the duct remains
finite.

2.2

Out of two coupled differential equations in ¢ and w
{see (A.5) and (A.6) in the Appendix), the one corres-
ponding to secondary flow contains 1 and the other
involves Reynolds number R. Therefore A is to be used
as perturbation parameter.

Introducing the series:

O =Ap+A%P+ ..., w=wo+tAiw + 2w+ ... (14)
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in the equations governing ¢ and w, deriving the
governing differential equations for the coefficient
functions in (14) and solving those equations under the
conditions of no-slip flow at solid-fluid interface and
finite velocity within duct, it is found that

wo = wolr),wy = wy(r)cosa,

Wa = waq(F)+way(r)cos2a  (15)
¢y =P y(r)sine. ¢, = ¢a,(r)sin 2y (16)
where
wo = R(1—71?), (17)
R3
Wi = a0 ——— (197 —40r° +30r° - 10r" +r%), (18)
R5
Wyy = l—l—m(—ﬂ 19 +212807* — 46 340r*
+55440r° -39 83078 + 17 584r1°
—4620r12 +640r14 —35r1%)  (19)
and
d11 = 55 R’ g (r=9r" +6r°=17) 20)
23
In conformity with (14), t is expanded as
t=to+ At +A%4 ... 1)
This and (7) yield
dto ) ot 0, % =0,...,at solid-fluid interface. (22)

dr or er
In the case of boundary condition (B), m (i.e. M) is
supposed to be unknown. Further, m is expected to
assume different values in curved and straight ducts.
Hence, when ¢ is given by (21), m is to be expressed as

m= mo+imy+A2ma+ ... (23)

Mathematically, two conditions should accompany
equation (6) because (6) is of second order. There are
three such conditions, viz. (7), (12) and (13). This means
one of these three conditions is meant for evaluation
of some quantity. That quantity can be m only. In
fact, the primary use of (7) is to determine m. As will
be shown in the sequel, the only use of first and
third equations of (22) is to determine m, and m,.
Hence, the above supposition, i.e. the series expansion
in (23), is mathematically consistent.

Inserting (14), (21) and (23) in (6) and equating
coefficients of Ai(i = 0, 1,2,...), there results a system of
differential equations. First three equations of that
system are successively cited and solved.

The first equation is

Vty = Pmgowo— Bldw,/dr)? (29)

where t, does not depend upon . Integrating both
sides of (24) over cross-sectional domain, applying
Gauss Theorem on Lhs. and using first equation of
(22), my is found as
my = ¢ (1+B) (25)
°"RP
where B, which is to be called as dissipation number,
is given by
B = BR> (26)
When (24) is solved after inserting in it the result (25),
two constants of integration occur which are deter-
mined by the conditions in (13) and (12). The solution
is found as
5+12r7—3r%) + 27

1 B R
- (— “(— — 3,
to 12( 6( 2+6r r*)

The second equation is the following partial
differential equation

1 0¢, dt
Vi ty =P ——(’1~—0+m0w1+m1w0
r o dr
dWOaWI

) L
Bdr or (28)

When both sides of (28) are integrated over cross-
sectional domain and Gauss Theorem and second

equation of (22) are used on Lh.s., m is found as
my = 0. (29)

When expressions of m; and others are inserted in
(28), the resulting equation admits ¢, in the form of

t; = t;1{rjcosa (30)

and then reduces to second order ordinary differential
equation with ¢;, as unknown. Solving that equation
and determining the integration constants by using
(dt,/dr), -1 = 0, which is derived from (30) and second
equation of (22), and using (13), the following solution
is found:

L _ R (1
17 34560 |10
X (—256r+285r —200r° +75¢7 — 15r° +r' 1)
P
+ 5(— 161r + 24073 — 22075 + 105r7 — 24r° +2111)

+B(11r+57r3 —80r° +45r" — 12r° + r'1)
+ BP(—68r+ 120r3 — 130r°

+75r7~21¢° +2r”)}. (31)
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The third equation is the following partial differential
equation

Vi, = {1 a(¢1,t1) 1 0¢, dto

oo, 1) r Jo dr

1 dw, dwy \? owz dwo
- it g 2l
B{(r Ba) * < 6r> * or dr (32

Integrating both sides of (32) over cross-sectional
domain and then using Gauss Theorem and third
equation of (22) on Lhs., the following solution for
m, is found:

——~+ Mow, + m2W0}

4 1541R*
_ 4 4R 3
2= RP 175(288)° ©3)

When expressions of m, and others are inserted in
(32), t, is found in the form of

t, = t21(r)+t22(r)cos 20 (34)

and two uncoupled second order ordinary differential
equations are obtained from which ¢,; and t,, can be
determined. The differential equation which corres-
ponds to t;; does not involve ¢,, and w;,. Solving it
and determining the integration constants by means of
(13) and (12), the following solution for ¢, is found:

. [L PF,  P*Fy
17 100(288)°[ 8820 © 420 ' 84

G, PG, P3G,
B
* <14o+ IR
where

Fi = 2926409 — 15 588 090r2 + 28 222 740r*
—29 194 2007° + 19 646 550r° — 9033 444r1°
+2769 480r!% — 534 600r'* + 56 700r'®
—2450r18

F, = 506917 —2580480r +4 339 440r*
4116 840r° +2 561 580r® — 1 118 8807'°
+331380r12 — 62640r'* +6615¢'¢ —~280r'®  (37)

F; = 301649 — 1622 880r% + 3035 340r* — 3 365 040r°
+2520630r® — 13109047 © +451 080r'?
—96120r'* +11 340r'® ~ 560r®

G, = 61033 — 598 140r* + 19152007 — 3 116 400r°
+2998 800r% — 1811 880r!° + 692 160r!2
—160200r'* + 19 800716 —980r'8

G, = —308247920r + 11 610r* — 46 020r°
+55395r% — 35640r1° + 13 860r! 2 — 3240714
+405r16 20718

(35)

(36)

(38)

(39

(40)
and
Gs = 122744 —685440r2 + 1 375920r* — 1 686 720r°

+ 1422 540r% — 836 136r1° 4 326 34012

— 78 840r'* +10395¢16 - 56018, (41)
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It is of primary interest to calculate average Nusselt
number, Nu. The following definition, which has
appeared in many papers dealing with straight ducts,
is taken:

ﬁ (6T/6r)w )
K T,—T.

Under present non-dimensionalization scheme, (42)
transforms to: Nu = (2/t,,,). When second order expres-
sion of t,,, (Which is easily calculable from (21), (30) and
(34)) is used, # is found that

Nu= 2{{'0(1)‘}’/{2[21(1)}—1. (43)

According to (43), t,, is not needed (this is the reason
for our not reporting ¢,, and w,,). Calculating t4(1)
from (27) and t,;(1) from (35) to (41) and inserting the
results in (43), the Nusselt number is given by

6
Nu= 44
“= 1=D)+1B(1-D) “4
where D is Dean number, D = AR?, and
1
J=—~——(34805 188P +377325P%
Taasoy (4805 133 188P43TT25P%) 49)
1
= ———(3642—332 64 1 2).
7= fasao5! 640P + 595 140P?) (46)

Retaining first three terms in (23) and using (25),
(29) and (33), the result for longitudinal temperature
gradient is presented as follows:

1541
m+ - 4(1 +B+A1D2), A1 = m,
. RPM
m* ==""" = RPm. (47)
B
It is found that
" =4{1+B+Q:'(Qo—Q)} (48)

where Q@ and Q, denote mass flow flux across cross-
section in curved and straight tubes respectively and,
based on results of Section 2.2,

Q = Qo(l—A4,D?% (49)

Equation (48) shows, which is interesting, that in the
change of straight to curved duct the increase in
magnitude of longitudinal temperature gradient corres-
ponds to the decrease in mass flow flux.

Since (44) and (47) are second order perturbation
solutions, magnitude of each of JD?, JD? and 4,D? is
necessarily less than unity. Keeping this in view, some
qualitative observations are made in the following
section.
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3. DISCUSSIONS
31

When viscous dissipation is neglected (i.e. B = 0), the

first equation of (47) is found as:

(m*)p=0 = 4(1+ 4,D%). (50)
Equation (50) shows that the magnitude of longitudinal
temperature gradient (i.e. rate of rise (fall) of tempera-
ture in main flow direction in the case of wall having
heat source (sink) distribution)) is larger in curved than
in straight tube, and increases when Dean number
increases. This may physically be interpreted as follows.
The fluid movement in longitudinal direction is slower
(in other words, mean velocity is lesser) in curved than
in straight tube. The given wall heat flux distribution
is same in both tubes. Therefore, the heat received (or
given up) per unit distance in longitudinal direction by
the fluid is greater in curved than in straight tube.
The same is greater at higher than at lower Dean
number, since mean velocity decreases as Dean number
increases (which may be inferred from (49)).

From (47), the effect of viscous dissipation is to
increase m* when B is positive (i.e. when wall contains
heat source distribution) and to decrease m* when B
is negative (i.e. when wall contains heat sink distribu-
tion). The same is found in straight duct case from

mg = 4(1+B). (51)
The explanation is given as follows. Due to viscous
dissipation, heat is generated in the body of fluid.
Therefore, the rate of heating of fluid in longitudinal
direction when § is positive would be larger (and that
of cooling of fluid in that direction when f is negative
would be lesser) in the presence than in the absence of
viscous heating.

From (51) and (47), an interesting observation is that
the positive-valued longitudinal temperature gradient
effected by viscous dissipation alone remains same in
curved and straight tubes. It should have been higher
in curved tube due to lesser mean velocity therein. This
means that heat generation due to viscous dissipation
is lesser in curved than in straight tube. In fact, in
straight tube, viscous heating is proportional to mean
kinetic energy of fluid motion, and decreases as mean
velocity decreases. Therefore, if mean velocity is
reduced when tube is curved, heat generation due to
viscous dissipation is likely to be reduced accordingly.
This may mathematically be shown as follows. Let
W, and W, — A, where A > 0 and 4 < W,, be the mean
velocities in straight and curved tubes respectively.
Then, in curved tube, dW/dr is of the order of
(W, — A)/a and 0W/éu is of the order of A. Therefore,
from the terms involving u in (5), the heat generation

due to viscous dissipation in curved tube is of the order

of
W,—A\* [A4\?
ACTD-OF e
a a
The same in straight tube is of the order of
W 2
1 <~°> : (53)
a
Subtracting (53) from (52), one obtains
2ud
A=), (54)

This difference is negative, since 4 < W,

One may also imagine that in going from straight
to curved duct, the viscous heating is not altered but
a heat sink distribution is created in fluid medium to
nullify the effect of mean velocity reduction on the
longitudinal temperature gradient effected by viscous
dissipation alone. In fact, the solution for m, consists
of three terms. One term is nothing but right hand side
of (33). The other two terms are equal and opposite.
Retaining all those three terms, m* is given by

mt =4+4B+4D*A, +4BD*A, —4BD*A4,. (55)

On the r.h.s. of (55), the fourth and fifth terms may be
said to correspond to mean velocity reduction and
above-imagined heat sink distribution respectively.

32

The Nusselt number solution when viscous dissipa-

tion is not taken into account is given by

N 6

(Nu)g=o = 1-D%J
which is deduced by setting B = 0 in (44). From (45), J
is positive, since Prandtl number P is non-negative, and
increases as P increases. Therefore, from (56), Nusselt
number is higher (i) at greater than at smaller Dean
number; (ii) at greater than at smaller Prandt! number
and (iii) in curved than in straight tube.

From (44), effect of viscous dissipation is to decrease
Nusselt number when B is positive and increase when B
is negative. This may be understood as follows. A
temperature distribution attaining largest values at wall
points and decreasing in directions of inward drawn
normals, which is effected in the fluid medium due to
wall heat source distribution, is augmented (ie.
becomes more marked), since a same kind temperature
distribution is effected due to viscous dissipation.
Therefore, magnitude of the temperature difference
T..— T, is increased (which implies that Nusselt
number is decreased). On the other hand, a tempera-
ture distribution attaining smallest values at wall points
and increasing in directions of inward drawn normals,

(56)
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which is effected in the fluid medium due to wall heat
sink distribution, is diminished (ie. becomes less
marked), since opposite to this is that due to viscous
dissipation. Therefore, magnitude of T, — T, is reduced
{(which implies that Nusselt number is increased).

In cooling devices, B takes positive values. It is
therefore of importance to investigate how the adverse
effect of viscous dissipation on Nusselt number in the
case of B>0 goes when tube is curved. In this
context, it is required to examine the ratio of the
Nusselt number in curved to that in straight tube, ie.
Nu/Nu,. First, J and J are needed to be compared.

Since the coefficient of P? in (46) is greater than the
coefficient of P? in (45), there exists a Prandtl number
value, P., such that J > J whenever P > P.. Clearly,
P, is equal to the greater of the two roots of the
equation

J-J=0. 7

It can easily be seen that one of the roots of this
equation is negative and the other is positive. There-
fore, P. is equal to the positive root. On calculating

this root is found to be
P. = 2:203 (approximately). {58}

Since Prandtl number does not assume negative values,
the following three statements hold good:

J>J and J* <1 whenever P> P, (59
J=J and J* =1 whenever P=F, (60)
and
J<J and J*'>1 whenever P< P, (61)
where
J* = (1= D¥)/(1~D*J). (62)

The above-mentioned ratio Nu/Nu, is given by

i\_’i.. 2+B
Nuy (1—-D*J)2+BJ*)

From (63), following informations are collected about
the Nusselt number ratio Nuw/Nug: (i} using (60), this
ratio remains unaffected by viscous dissipation at
P = P..(ii) from (59), it increases as B increases through
positive values whenever P > P, {see Fig. 2); and (iii)
from (61), it decreases as B increases through positive
values whenever P < P, (see Fig. 3). Figures 2 and 3
exhibit the relationship between the Nusselt number
ratio Nu/Nuy and the Dean number D at same set
of values of the dissipation number B (where case of
B < 0 has also been included) but at different fixed
values of the Prandtl number P, namely, P = 7 in Fig.
2 and P =05 in Fig. 3. One can see that the order
of curves in Fig 2 is reversed in Fig. 3, which is
simply because 7> P, and 05 < P,

(63)

Nu
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T2 P
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F1G. 3. (Nu/Nuplp=o.5 vs D with B as parameter.
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3.3

The solutions which are obtained for longitudinal
temperature gradient and Nusselt number without
taking viscous dissipation into account have percentage
errors given by

M~ (M)g=o m"—(m")p=o
E, =100 = 100 -,
! (M)g=o (m+)3:o
Nu—(Nu)g=o
E,=100—————— (64
: (Nw)g=a 4
respectively. From (47) and (50),
100B
Ei=——. 65
144,07 (63)
From (44) and (56), and using (62),
—100B
Ey=——0. 66
272U '+B (6

From (65), it is seen that the magnitude of E,
assumes maximum value in straight tube. This is not
observed for E; from (66). The magnitude of E, goes
as follows in the case of B> 0. At P =P, it is such
as is found in straight tube, according to (60) and (66).
It is lower in curved than in straight tube whenever
P > P, as is concluded from (59) and (66). In view of
(61) and (66), it is higher in curved than in straight
tube whenever P < P..

The magnitudes of E, are lower for positive than for
negative values of B. This can be seen in Table 1,
wherein, numerical values of E, at few positive and
negative values of B have been given.

analysis is not affected by the parameter B. For
instance, looking into the r.h.s. of (44) and first equation
of (47), it is seen that the present solutions for
Nusselt number and longitudinal temperature gradient
are valid for all values of B. This is due to the fact
that B occurs in straight tube case.
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APPENDIX

Under the application of Dean’s simplification rules {2],  (8), reduce to
mentioned in Section 2.1, the equations of motion and

continuity come out as:

U
oF

U—+-—+

or

L

_+____+__
o FOF P ox?

(A4)

where p denotes pressure. These equations, after admitting

1 8(¢,V2¢) . 0w cosadw
VeU V' Wicosa  1dp Vi + o e tAwlsnag =) =0 (AS)
Foa F b péF
w éfov vV 18U 1 d(¢, w)
——x|l=+t-—--=] (A1l 2 L= =
pf@a(@f F F Oa (A1) Vw+ra(r’a)+4R 0 (A.6)
V. Vv UV Wising 1ép
= — == where V* denotes biharmonic operator in (r,«) and
F O F b pr 0o
ueéfev v 1eU a3p< 1dp
+-—|=+-—=-=] (A2 R=—{--—=]
paf<af+f F o A2 4u*\ bao

ANALYSE DU TRANSFERT THERMIQUE ETABLI ET STATIONNAIRE
POUR UN ECOULEMENT LAMINAIRE DANS UNE CONDUITE CIRCULAIRE COURBE,
AVEC DISSIPATION VISQUEUSE

Résumé—On considére un transfert thermique établi, stationnaire pour un écoulement laminarie 3
propriétés physiques constantes, dans un tube courbe, avec une distribution source de chaleur dans la
paroi. On discute des conditions aux limites thermiques pour un tube courbe & section droite circulaire,
en prenant en considération la génération de chaleur due a la dissipation visqueuse. Une analyse de
perturbation est développée dans le cas ou le gradient normal de température a la paroi est constant
sur la circonférence. On obtient et discute les solutions pour le nombre de Nusselt moyen et pour
le changement de température du fluide dans la direction de I'écoulement. Les effets de la dissipation
visqueuse sur ces grandeurs sont étudiés. Dans la discussion, on compare les cas des tubes courbes et droits.

DIE BESTIMMUNG STATIONAREN, VOLLSTANDIG AUSGEBILDETEN
WARMEUBERGANGES BEI LAMINARER STROMUNG IN GEKRUMMTEN
ROHREN MIT VISKOSER DISSIPATION

Zusammenfassung— Diese Arbeit behandelt das Problem stationiren, vollstindig ausgebildeten Wiirme-
iiberganges bei laminarer Strémung mit konstanten physikalischen Werten in gekriimmten Rohren, der
durch eine Wirmequellen- (oder Senken-) Verteilung in der Wand hervorgerufen wird. Die thermischen
Randbedingungen werden fiir gekriimmte runde Rohre angegeben, wobei von der Wirmeerzeugung
durch viskose Dissipation ausgegangen wird. Es wurde eine Stérungsbestimmung fiir solche Fille
vorgenommen, bei denen der Temperaturgradient normal zur Innenwand als vorgegeben und konstant
am Umfang behandelt wird. Losungen fiir die mittlere Nu-Zahl und die Fluidtemperaturinderung in
Hauptstromungsrichtung werden angegeben und ersrtert. Die Auswirkung des Vorganges der viskosen
Dissipation auf diese GroBen wurde untersucht. Beide Fiille des gekriimmten und deraden Rohres werden
miteinander verglichen.

AHAJIN3 CTALMOHAPHOTO TNOJIHOCTBIO PA3BUTOIO TEIJIOOBMEHA
ney JAMUHAPHOM TEYEHWHN C BA3KOWU NJUCCUTIALIMEN B U30THYTOM
KPYIJIOM TPYBE

Annotauns — PaccMaTpuBaeTtcs 3anava CTallMOHAPHOTO IMOJMHOCTBIO PA3ZBUTOTO TEIJIONIEPEHOCA TIPU
JJAMHUHAPHOM TCYEHUHU XHUAKOCTH C MOCTOAHHbLIMH d)ld'i""lCCKMMM CBOWCTBAMHU B H3IOTHYTOH prGC
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[PU HATUYUY UCTOYHMKOB MITH CTOKOB TerJia B Matepuane cTeHkd. O6CyxaatoTcs TenAoBble rpaHut-
HbIE YCNOBHR 1718 M3OTHYTOH TPyObl KPYIJOro ceueHMs ¢ y4ETOM TEIIOBbIACAEHHUS 33 CUET BA3KOM
aUccUnauun. MeTonoM Teopuu BO3IMYLIEHHH NPOAHANMIMPOBAHLI CiTyYaH, KOTAA HOPMAbHbI
TPARHEHT TEMMEPATYPbl BHYTPEHHER CTEHKU CYMTAETCH 3adaHHbIM U [OCTOSHHLIM O MEPUMETPY.
TMony4enbt n 0bcyXaarOTCa peweHns ans cpenHero uucna HyccenbTa M cKOPOCTH M3MEHEHUSt TeM-
TEpaTypbl XKUAKOCTU B HANPABJIEHUH OCHOBHOTO MoToka. MccnieayeTcs BTMAHKE BA3KOH AMccHMaumnu
Ha JTH BeuuuHbl [Tpn o6cyaeHHn NPoBOAUMNOCH CPABHEHUE PE3Y/TbTATOB I C/YYasi U3OTHYTON
U NpMOH TpyOhi.



