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Abstract--In this paper a problem of steady state fully developed heat transfer in laminar flow of 
constant physical properties in a curved tube, etfected by a heat source (or sink) distribution present 
in wall material, has been considered. Thermal boundary conditions have been discussed for a curved tube 
of circular cross-section, taking into consideration the heat generation due to viscous dissipation. A 
perturbation analysis has been carried out for those situations in which the normal temperature gradient 
at the inner wall surface is regarded as prescribed and constant circumferentially. Solutions for average 
Nusselt number and the rate ofchange of fluid temperature in the main flow direction have been obtained 
and discussed. Effects of viscous dissipation phenomenon on these quantities have been investigated. In the 

discussions, curved and straight duct cases have been compared. 

NOMENCLATURE 

cross-sectional radius, Fig. 1; 
radius of curvature, Fig. 1; 
specific heat at constant pressure; 
coefficient of thermal conductivity; 
Nusselt number; 
Prandtl number; 
co-ordinate system, Fig. 1; 
Reynolds number, based on longitudinal 
pressure gradient; 
local temperature; 
velocity components in directions of 

increasing F, CI, t) respectively; 
density and coefficient of viscosity 
respectively; 
ajb. 

Subscripts 

a, mean value along cross-sectional boundary; 

; 
mean value over cross-sectional domain; 
straight duct case with same cross-sectional 
radius, longitudinal pressure gradient and 
wall normal temperature gradient as in 
curved duct; 

W, value at solid-fluid interface. 

1. INTRODUCTION 
1.1 
DEAN [l, 21 initiated theoretical studies of flows of 
fluids in curved tubes. Heat-transfer problems asso- 
ciated with such flows constitute a modern area of 

____ 
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research. The following problem is of both engineering 
and academic interest. 

1.2 Physical problem 
A Newtonian fluid flows through a curved tube of 

circular cross;section. The flow is laminar. The wall 
material (but not the fluid) contains a uniform heat 
source (or sink) distribution. Both velocity and 
temperature fields are fully developed and steady. The 
following conditions (which are usual assumptions) are 
satisfied. 

(i) Area of cross-section and radius of curvature 
remain constant in longitudinal direction. 

(ii) Variations of physical properties are negligible. 
(iii) Secondary free convection effects are negligible. 

1.3 
When the conditions (ii) and (iii) are satisfied, viscous 

dissipation may be non-negligible. This point has been 
discussed, on the basis of the dynamical similarity 
principle, in [3,4]. In these and in [5], all of which have 
dealt with the above physical problem for straight 

“:_;- 
FIG. 1. Coordinate system. 
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ducts, qualitatively interesting and quantitatively signi- 
ficant effects of viscous dissipation have been reported. 

The effects of this physical phenomenon in a curved 
duct should necessarily be different from those in a 
straight duct, since the velocity distribution in one is 
quantitatively and qualitatively different from that in 
the other. Therefore, it is of interest to know how 

these effects are altered when one proceeds from the 
straight to the curved shape. 

It may be said that the heat generation due to 

viscous dissipation is considerable in fast laminar flow 
through narrow tube (such tube flows are found in 
compact heat exchangers), and also considerable in 
highly viscous flows (e.g. flows of oils). 

1.4 

For the thermally fully developed flow region, it is 

simple to conclude (both for curved and straight ducts) 
that in the longitudinal direction the normal tempera- 
ture gradient at the solid-fluid interface remains 

constant and the temperature at this interface and 
within the flowing medium varies linearly at a fixed 

rate. The following discussion draws the remaining 
picture of thermal boundary conditions. 

situation, heat flow is not allowed to take place in the 
wall material, Obviously, wall heat source (sink) distri- 

bution can exist only in the inner surface. In case of 
heat source, the heat generated in each element of inner 
surface of wall will totally flow in the normal direction 
to the adjacent fluid. The reverse of this will occur in the 

case ofheat sink. Therefore. it is the normal temperature 
gradient, not the temperature, which is prescribed along 
cross-sectional boundary. Thus when wall heat source 
(sink) distribution is uniform, the solid-fluid interface 

temperature continues to be circumferentially non- 
uniform, and the prescribed thermal boundary condi- 

tion is (B): normal temperature gradient at solid-fluid 
interface is constant in both circumferential and 
longitudinal directions. A similar situation, where (B) 

is prescribed, is that of wall of very small thickness. It 

may be stated that if both thermal conductivity 
coefficient and thickness of wall are small, the pre- 
scribed boundary condition is nearly as in (B). 

In a curved tube of circular cross-section, the velocity 

distribution and the viscous dissipation are circum- 
ferentially non-uniform. These, therefore, allow the 
normal temperature gradient to vary around the cross- 
sectional boundary, and allow a non-uniform circum- 
ferential temperature gradient to exist in the wall 
material. The latter, in turn, can give rise to the process 
of conduction in the solid material. Consequently, 

involvement of the wall thermal conductivity can occur 
in prescribing the thermal boundary condition circum- 
ferentially. In this event, although the cross-sectional 
boundary is circular and the wall heat source (sink) 
distribution is uniform, the problem becomes quite 
complicated. The situations in which the said involve- 
ment is either absent or insignificant are described 
below. 

In the case of straight duct of circular cross-section, 
both velocity distribution and viscous dissipation are 
circumferentially constant. Therefore, when wall heat 

source (sink) distribution is constant, there are only 
two boundary conditions, namely, (A) and (B) which 
are satisfied simultaneously (i.e. if (A) is prescribed (B) 
holds good and vice versa). 

To summarize, there is a marked distinction between 
thermal boundary condition cases of straight and 

curved tubes when the cross-sections of both are 
circular. Such a distinction exists between the cases of 
straight ducts of circular and non-circular cross- 
sections discussed in [6,7]. It is of interest to note that 
the cases of straight duct of non-circular cross-section 

and curved duct of circular cross-section are analogous 
as far as thermal boundary conditions are concerned. 

1.5 

Let the coefficient of thermal conductivity of the wall 
be infinite (i.e. very large). This makes the circum- 

ferential temperature differences in wall material (but 
not the variation of normal temperature gradient along 
cross-sectional boundary) to disappear. Thus the pre- 
scribed thermal boundary condition is (A): solid-fluid 
interface temperature is constant and varies linearly in 
circumferential and longitudinal directions respec- 

tively. A similar situation, where (A) is prescribed, is 
that of wall of infinite (i.e. of very large) thickness. It 
may be said that if both thermal conductivity coefficient 
and thickness of wall are large, the boundary condition 
is prescribed as (A) approximately. 

The theoretical papers which have specifically dealt 
with the problem stated in Section 1.2 are: Mori and 

Nakayama [S], Ozisik and Topakoglu [9], Akiyama 
and Cheng [lo] and Kalb and Seader [ll]. In each 
of these papers, only the boundary condition (A) has 

been considered, and the viscous dissipation has not 

been taken into account. The first two papers, [8,9], 
contain analytical studies, viz. boundary layer and 
second order perturbation analyses for large and small 

Dean number values respectively. The remaining two 
[lo, 111, are numerical studies, where the Dean number 
values not considered in [8,9] have also been dealt with. 

Herein, the case of the boundary condition (B) is 
analyzed by taking viscous dissipation into considera- 
tion. 

2. ANALYSIS 

2.1 

On the other hand, let the coefficient of thermal The following energy equation may be considered 

conductivity of wall be zero (i.e. very small). In this with regard to the temperature distribution in the 
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problem stated in Section 1.2 : 

aT VaT W aT 

pcp u%+ u &;+ b+Fcoscr j$j > 

=K 
I 

a+ 
COStI aT 

a? > b+rcoscc 5 

( ucosu 
+ 

Vsinu ‘1 

b+- b+FcosIx 1 > 

neglected. As a result, (1) reduces to the following very 
simple form : 

aT VaT WaT 
U~f>~;+jy~ 

> 

a2T I aT i a2T 
F+yz+Fz 

Equations (5) and (2) are transformed to following 
dimensionless forms: 

Wcosa 
VZt = p 

ai: b+Fcosa 

( av v iau 2 + Jyi+Y& )I (1) 
where the terms involving p are due to viscous 
dissipation. 

The boundary condition (B) may be stated mathe- 
matically as 

aT 
z = /3 at solid-fluid interface (2) 

where fl is constant and is positive (negative) if wall 
contains heat source (sink) distribution. 

Dean in his beautiful work [2] introduced a set of 
rules to simplify equations of motion and continuity. 
The resulting equations are approximate (see (A.l) to 
(A.4) in the Appendix). Any result based on those 
equations suffers from insignificant error when 
(a/b) = I << 1; which is supported by experimental 
studies [12,13]. Dean [2] solved the approximate 
equations by a perturbation method and reported a 
second order solution for velocity distribution. In [2], 
the qualitative predictions based on the second order 
perturbation solution are physically consistent. Dean’s 
analysis [2] has been extended to various hydro- 
dynamic problems in curved tubes, viz. non-Newtonian 
flows [14]; dispersion of a solute in fluid flow [15], 
etc. 

An analysis similar to that in [2] is carried out for 
(1) and (2). 

According to Dean’s simplification rules [2], it is 
required to replace 

b+rcoscr by b (3) 

cosfx(or, sin M) a 
+ b+icoscc by G 

in (1) and also to take care that if terms like 
(a W/G) { W cm oc/(b + 7 cos a)} are being neglected then 
terms of same order like (V/F)(aV/aF) are also to be 

at 
- = 1 
ar 

at solid-fluid interface (7) 

where V2 is Laplacian operator in (r,a); first term in 
the coefficient of P involves Jacobian notation; and 

,=J w=paW la@_pau a4 
a’ P ’ r au p ar 

= - py, (8) 

&Qf=-l~_IaT,_~~ 
B baa b do b d0’ (9) 

(10) 

(11) 

Last two equations of (8) define secondary flow stream 
function +(r, a). In (9), M is independent of F, a and 0. 
The dimensionless temperature difference t, which is 
defined by (lo), is independent of 0. It may be noted 
that the definition (10) is specifically appropriate for 
the case of boundary condition (B). 

While solving (6) under (7) the relations: 

t, = 0 (12) 
and 

t#a (13) 

are to be used in order to obtain bounded unique 
solution for t, where (12) is derived from (lo), and 
(13) means that the temperature in the duct remains 
finite. 

2.2 
Out of two coupled differential equations in C$ and w 

(see (AS) and (A.6) in the Appendix), the one corres- 
ponding to secondary flow contains 1 and the other 
involves Reynolds number R. Therefore I is to be used 
as perturbation parameter. 

Introducing the series : 

4=141+124,+ . . ..w = wo+lw,+12w2+ . . . (14) 
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in the equations governing C$ and M’, deriving the 
governing differential equations for the coefficient 
functions in (I 4) and solving those equations under the 
conditions of no-slip flow at solid-fluid interface and 
finite velocity within duct, it is found that 

wg = w&.). 1\‘, = \\‘* 1 (r) cos St, 

w2 = wzl(r)+ w,,(r)cos2r (15) 

#1 = +ii(r)sincr.~$~ = &l(r)sin2g (16) 

where 

w0 = R(1 -r’), (17) 

wI1 = &(19r-40r3+30r5-10r7+r9). (18) 

wlr = 112(~~60)~(-4119+21280r2-46340r’ 

+55440r6-39830r8+-17584r10 

-4620r’2+640r’4-35r’6) (19) 

and 

41, = 2%(4r-9r3+6r’-r’). (20) 

2.3 
In conformity with (14) t is expanded as 

t =to+It,+1.2t2+ 

This and (7) yield 

(21) 

dto 
^ 

dr = 1, ‘2 = 0, cz = O,...,at solid-fluid interface. (22) 

In the case of boundary condition (B), m (i.e. M) is 
supposed to be unknown. Further, m is expected to 
assume different values in curved and straight ducts. 
Hence, when t is given by (21), m is to be expressed as 

in= mo+LmI+d2m2+ (23) 

Mathematically, two conditions should accompany 

equation (6) because (6) is of second order. There are 
three such conditions, viz. (7) (12) and (13). This means 
one of these three conditions is meant for evaluation 
of some quantity. That quantity can be m only. In 
fact, the primary use of (7) is to determine m. As will 
be shown in the sequel, the only use of first and 
third equations of (22) is to determine m. and m2. 
Hence, the above supposition, i.e. the series expansion 
in (23), is mathematically consistent. 

Inserting (14) (21) and (23) in (6) and equating 
coefficients of L’(i = 0, 1,2,. .), there results a system of 
differential equations. First three equations of that 
system are successively cited and solved. 

The first equation is 

V2to = Pm0 w. - B(dwo/dr)2 (24) 

where to does not depend upon u. Integrating both 
sides of (24) over cross-sectional domain, applying 
Gauss Theorem on 1.h.s. and using first equation of 

(22), m, is found as 

m. = &(l +B) 

where B, which is to be called as dissipation number, 
is given by 

B = BR2. (26) 

When (24) is solved after inserting in it the result (25), 

two constants of integration occur which are deter- 
mined by the conditions in (13) and (12). The solution 

is found as 

to = A(-5+12r2-3r’) + i(-2+6r’-3r4). (27) 

The second equation is the following partial 

differential equation 

V2tl =P 
( 

~~~d~+mowI+mIwO 
> 

- 2B ‘2 ‘2. (28) 

When both sides of (28) are integrated over cross- 

sectional domain and Gauss Theorem and second 
equation of (22) are used on l.h.s., ml is found as 

m1 = 0. (29) 

When expressions of ml and others are inserted in 
(28), the resulting equation admits tl in the form of 

tl = tll(r)cosm (30) 

and then reduces to second order ordinary differential 
equation with tll as unknown. Solving that equation 

and determining the integration constants by using 
(dt, ,/dr),= i = 0, which is derived from (30) and second 
equation of (22), and using (13) the following solution 
is found : 

RZ 1 __ - 
tl’ = 34560 1 10 

x (-256r+285r3-200r5+75r7-15r9+r”) 

+~(-161r+240r3-220r5+105r7-24rg+2r’1) 

+B(llr+57r3-80r5+45r7-12r9+r1’) 

+BP(-68r+120r3-130r5 

+75r’-21r9+2r”) 
1 

(31) 
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The third equation is the following partial differential 
equation 

V2t 1 WJZ dto 
+ - - -+ mowz+mzwo 

r aa dr 

--8((;$)1+@$+2~($$ (32) 

Integrating both sides of (32) over cross-sectional 
domain and then using Gauss Theorem and third 
equation of (22) on l.h.s., the following solution for 
m2 is found : 

4 1541R4 

mz=RP’175(288)3. (33) 

When expressions of m2 and others are inserted in 
(32), t2 is found in the form of 

tz = tz1(r)+tz2(r)cos2a (34) 

and two uncoupled second order ordinary differential 
equations are obtained from which tzl and t22 can be 
determined. The differential equation which corres- 
ponds to tzl does not involve 422 and wz2. Solving it 
and determining the integration constants by means of 
(13) and (12), the following solution for tzl is found: 

R4 2 

t 
21 = loooj 

zL.+PL.?+P$ 
8820 

>I (35) 

where 

Fl = 2 926 409 - 15 588 09Or’ + 28 222 740r4 

- 29 194 200r6 + 19 646 550r* - 9 033 444r” 

+ 2 769 480r” - 534 600rL4 + 56 700r16 

- 2450r18 (36) 

F2 = 506917-2580480r2+4339440r4 

-4116840r6+2561580r8-1118880r10 

+331380r12-62640r14+6615r16-280r18 (37) 

F3 = 301649 - 1622 @Or2 + 3 035 340r4 - 3 365 040r6 

+2520630r8-1310904r’o+451080r’2 

-96120r’4+11340r’6-560r18 (38) 

G1 =61033-598140rZ+1915200r4-3116400r6 

+2998 8OOr*- 1811880r’0+692 160r12 

- 160200rL4+ 19800r’6-980r’8 (39) 

Gz = - 3082 f 7920r’ + 11 610r4 - 46 020r6 

+55395r8-35640r’o+13860r’2-3240r’4 

+405r16-20r’6 (40) 
and 

G3 = 122 744 - 685 440r2 + 1375 920r4 - 1686 720r” 

+ 1422 540r’ - 836 136r” + 326 340r” 

-78840r’4+10395r16-560r18. (41) 

2.4 
It is of primary interest to calculate average Nusselt 

number, Nu. The following definition, which has 
appeared in many papers dealing with straight ducts, 
is taken: 

2a K(dT/di;), 
Nu=-. 

K T,,-T, 
(42) 

Under present non-dimensionalization scheme, (42) 
transforms to : Nu = (2/t,,). When second order expres- 
sion oft, (which is easily calculable from (21), (30) and 
(34)) is used, & is found that 

Nu = 2{to(l)+12t21(l)}-1. (43) 

According to (43), tz2 is not needed (this is the reason 
for our not reporting 422 and wz2). Calculating to(l) 
from (27) and tzi(l) from (35) to (41) and inserting the 
results in (43), the Nusselt number is given by 

6 

N” = (1 -O’J)+$B(l -D2J) 

where D is Dean number, D = AR’, and 

J= 

J= 

&34805+133 188P+377325P2) (45) 

&(3642_33264OP+595 14OP’). (46) 

Retaining first three terms in (23) and using (25), 
(29) and (33), the result for longitudinal temperature 
gradient is presented as follows: 

m+ 
1541 

= 4(1 +B+A1D2), Al = ~ 
175(288)3’ 

m+ 
RPM 

= __ = RPm. (47) 
B 

It is found that 

m+ = 4{1+B+Q;‘(Qo-Q)) (48) 

where Q and Q. denote mass flow flux across cross- 
section in curved and straight tubes respectively and, 
based on results of Section 2.2, 

Q = QoU -AID’) (49) 

Equation (48) shows, which is interesting, that in the 
change of straight to curved duct the increase in 
magnitude of longitudinal temperature gradient corres- 
ponds to the decrease in mass flow flux. 

Since (44) and (47) are second order perturbation 
solutions, magnitude of each of JO’, JDz and AID2 is 
necessarily less than unity. Keeping this in view, some 
qualitative observations are made in the following 
section. 
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3. DISCUSSIONS 

3.1 
When viscous dissipation is neglected (i.e. B = 0), the 

first equation of (47) is found as: 

(??i+)*=e = 4(1 +AjD2). (50) 

Equation (50) shows that the magnitude of longitudinal 
temperature gradient (i.e. rate of rise (fall) of tempera- 

ture in main flow direction in the case of wall having 

heat source (sink) distribution)) is larger in curved than 
in straight tube, and increases when Dean number 

increases. This may physically be interpreted as follows. 
The fluid movement in longitudinal direction is slower 
(in other words, mean velocity is lesser) in curved than 
in straight tube. The given wall heat flux distribution 

is same in both tubes. Therefore, the heat received (or 
given up) per unit distance in longitudinal direction by 

the fluid is greater in curved than in straight tube. 

The same is greater at higher than at lower Dean 
number, since mean velocity decreases as Dean number 
increases (which may be inferred from (49)). 

From (47), the effect of viscous dissipation is to 
increase m+ when B is positive (i.e. when wall contains 
heat source distribution) and to decrease m+ when B 
is negative (i.e. when wall contains heat sink distribu- 
tion). The same is found in straight duct case from 

mo+ = 4(1 +B). (51) 

The explanation is given as follows. Due to viscous 
dissipation, heat is generated in the body of fluid. 
Therefore, the rate of heating of fluid in longitudinal 
direction when /I is positive would be larger (and that 

of cooling of fluid in that direction when p is negative 

would be lesser) in the presence than in the absence of 

viscous heating. 
From (51) and (47), an interesting observation is that 

the positive-valued longitudinal temperature gradient 
effected by viscous dissipation alone remains same in 
curved and straight tubes. It should have been higher 
in curved tube due to lesser mean velocity therein. This 
means that heat generation due to viscous dissipation 

is lesser in curved than in straight tube. In fact, in 
straight tube, viscous heating is proportional to mean 

kinetic energy of fluid motion, and decreases as mean 
velocity decreases. Therefore, if mean velocity is 
reduced when tube is curved, heat generation due to 
viscous dissipation is likely to be reduced accordingly. 
This may mathematically be shown as follows. Let 
we and v0 - A, where 2 > 0 and A -C Fe, be the mean 
velocities in straight and curved tubes respectively. 
Then, in curved tube, dW/& is of the order of 
(rO -_J)/a and aW/& is of the order of A. Therefore, 
from the terms involving p in (5) the heat generation 

due to viscous dissipation in curved tube is of the order 
of 

I({(v)’ + (;l!‘i. 
The same in straight tube is of the order of 

Subtracting (53) from (52) one obtains 

+-@g 

This difference is negative, since A < wa. 
One may also imagine that in going from straight 

to curved duct, the viscous heating is not altered but 
a heat sink distribution is created in fluid medium to 

nullify the effect of mean velocity reduction on the 

longitudinal temperature gradient effected by viscous 
dissipation alone. In fact, the solution for mz consists 
of three terms. One term is nothing but right hand side 
of (33). The other two terms are equal and opposite. 
Retaining all those three terms, m+ is given by 

m+ = 4+4B+4D2A1 +4BD2A1-4BD2A1. (55) 

On the r.h.s. of (55), the fourth and fifth terms may be 
said to correspond to mean velocity reduction and 
above-imagined heat sink distribution respectively. 

The Nusselt number solution when viscous dissipa- 
tion is not taken into account is given by 

(wB=O = & 
which is deduced by setting B = 0 in (44). From (45), J 
is positive, since Prandtl number P is non-negative, and 
increases as P increases. Therefore, from (56), Nusselt 

number is higher (i) at greater than at smaller Dean 
number; (ii) at greater than at smaller Prandtl number 
and (iii) in curved than in straight tube. 

From (44), effect of viscous dissipation is to decrease 

Nusselt number when B is positive and increase when B 
is negative. This may be understood as follows. A 

temperature distribution attaining largest values at wall 
points and decreasing in directions of inward drawn 
normals, which is effected in the fluid medium due to 
wall heat source distribution, is augmented (i.e. 
becomes more marked), since a same kind temperature 
distribution is effected due to viscous dissipation. 
Therefore, magnitude of the temperature difference 
Two-T, is increased (which implies that Nusselt 
number is decreased). On the other hand, a tempera- 
ture distribution attaining smallest values at wall points 
and increasing in directions of inward drawn normals, 
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which is effected in the fluid medium due to wall heat 

sink distribution, is diminished (i.e. becomes less 
marked), since opposite to this is that due to viscous 
dissipation. Therefore, magnitude of T,, - T, is reduced 
(which implies that Nusselt number is increased). 

In cooling devices, B takes positive values. It is 
therefore of importance to investigate how the adverse 
effect of viscous dissipation on Nusseft number in the 
case of 3 > 0 goes when tube is curved. In this 
context, it is required to examine the ratio of the 
Nusselt number in curved to that in straight tube, i.e. 
Nu/Nuo. First, J and fare needed to be compared. 

Since the coefficient of P2 in (46) is greater than the 
coeRicient of P* in (45), there exists a Prandtl number 
value, P,, such that J > 3 whenever P J+ P,. Clearly, 
P, is equal to the greater of the two roots of the 
~l&3tiOll 

J-J-0. (57) 

It can easiiy be seen that one of the roots of this 
equation is negative and the other is positive. There- 
fore, P, is equal to the positive root. On calcuiating 
this root is found to be 

P, = 2.203 (approximately). IS@ 

Since Prandtl number does not assume negative values, 
the following three statements hold good: 

J > J and .3’ < 1 whenever P > P,, ($9) 

J= J and J+ = 1 whenever P = P, (60) 

and 

f<J and J’>L wheneverP<P, (61) 

where 

J+ = (1 - D”Jy( I- D2J). (62) 

The a~ve-mentions ratio Nu/NuO is given by 

NU 2+B -----= 
NuO (l-D2J)(2+BJ+)’ 

(63) 

From (63}, following informations are collected about 
the Nusseit number ratio Nu/Nzio: {i) using (60), this 
ratio remains unaffected by viscous dissipation at 
P = PC; {ii) from (59), it increases as B increases through 
positive values whenever P > P, (see Fig. 2); and (iii) 
from (611, it decreases as B increases through positive 
values whenever P < P, (see Fig. 3). Figures 2 and 3 
exhibit the relationship between the Nusselt number 
ratio Nu/Nuo and the Dean number D at same set 
of values of the dissipation number B (where case of 
B < 0 has also been iuclud~) but at different fixed 
values of the Prandtl number P, namely, P = 7 in Fig. 
2 and P = 0.5 in Fig. 3. One can see that the order 
of curves in Fig. 2 is reversed in Fig. 3, which is 
simply because 7 > P, and O-5 < P,. 

Fro. 2. (~~/~u*~~= 7 vs Lt with B as parameter. 

co45 

0 40 80 120 160 200 240 280 
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3.3 
The solutions which are obtained for longitudinal 

temperature gradient and Nusselt number without 

taking viscous dissipation into account have percentage 
errors given by 

E = 100M-m=O mf-(m+)B=O 
1 

(IqBZO = loo oB,;--’ 

E 

2 
= 100~wwB=O 

W&=0 
(64) 

respectively. From (47) and (50) 

1OOB 
El=-------. 

1 SArD2 

From (44) and (56), and using (62) 

E2 = 
-1OOB 

2(J+)-‘+B’ 
(66) 

From (65), it is seen that the magnitude of El 
assumes maximum value in straight tube. This is not 
observed for Ez from (66). The magnitude of E2 goes 
as follows in the case of B > 0. At P = P,, it is such 
as is found in straight tube, according to (60) and (66). 
It is lower in curved than in straight tube whenever 
P > P,, as is concluded from (59) and (66). In view of 
(61) and (66), it is higher in curved than in straight 
tube whenever P < P,. 

The magnitudes of Ez are lower for positive than for 
negative values of B. This can be seen in Table 1, 

wherein, numerical values of E2 at few positive and 
negative values of B have been given. 

analysis is not affected by the parameter B. For 
instance, looking into the r.h.s. of (44) and first equation 
of (47) it is seen that the present solutions for 
Nusselt number and longitudinal temperature gradient 
are valid for all values of B. This is due to the fact 

that B occurs in straight tube case. 
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APPENDIX 

Under the application of Dean’s simplification rules [2], 
mentioned in Section 2.1, the equations of motion and 
continuity come out as: 

au vau vz wzcoscc 1 dp 
Udf+iaa-T-b=--- 

paf 
p d 

( 

av -+" 
pr l?G( df f 

av vav uv W’sina 
vaf+;z+T+ b - 

1 ap 
paa 

pdav v 
+---+T ( pa? c'f 

_ 

; a: (A.l) 

(A.3) 

(A.4) 

where p denotes pressure. These equations, after admitting 
(8) reduce to 

V2w+!%%!?+4R=0 
r %-,a) 

(A.6) 

where V“ denotes biharmonic operator in (r, a) and 

ANALYSE DU TRANSFERT THERMIQUE ETABLI ET STATIONNAIRE 
POUR UN ECOULEMENT LAMINAIRE DANS UNE CONDUITE CIRCULAIRE COURBE, 

AVEC DISSIPATION VISQUEUSE 

RCumC-On considire un transfert thermique etabli, stationnaire pour un tcoulement laminarie a 
prop&t& physiques constantes, dans un tube courbe, avec une distribution source de chaleur dans la 
paroi. On discute des conditions aux limites thermiques pour un tube courbe a section droite circulaire, 
en prenant en consideration la generation de chaleur due a la dissipation visqueuse. Une analyse de 
perturbation est dtveloppte dans le cas oti le gradient normal de temperature a la paroi est constant 
sur la &conference. On obtient et discute les solutions pour le nombre de Nusselt moyen et pour 
le changement de temperature du fluide dans la direction de l’ecoulement. Les effets de la dissipation 
visqueuse sur ces grandeurs sont ttudies. Dans la discussion, on compare les cas des tubes courbes et droits. 

DIE BESTIMMUNG STATIONAREN, VOLLSTANDIG AUSGEBILDETEN 
WARMEUBERGANGES BE1 LAMINARER STRGMUNG IN GEKRUMMTEN 

ROHREN MIT VISKOSER DISSIPATION 

Zusammenfassung-Diese Arbeit behandelt das Problem stationlren, vollstandig ausgebildeten Wlrme- 
iiberganges bei laminarer Stromung mit konstanten physikalischen Werten in gekriimmten Rohren, der 
durch eine Warmequellen- (oder Senken-) Verteilung in der Wand hervorgerufen wird. Die thermischen 
Randbedingungen werden fur gekrummte runde Rohre angegeben, wobei von der Wkmeerzeugung 
durch viskose Dissipation ausgegangen wird. Es wurde eine Storungsbestimmung fur solche Falle 
vorgenommen, bei denen der Temperaturgradient normal zur Innenwand als vorgegeben und konstant 
am Umfang behandelt wird. Losungen fur die mittlere Nu-Zahl und die Fluidtemperaturanderung in 
Hauptstromungsrichtung werden angegeben und erortert. Die Auswirkung des Vorganges der viskosen 
Dissipation auf diese Grogen wurde untersucht. Beide Fllle des gekriimmten und deraden Rohres werden 

miteinander verglichen. 

AHAnM3 CTAUMOHAPHOrO fIOJIHOCTbI0 PA3BMTOI-0 TEIIJIOO6MEHA 
HPM nAMMHAPHOM TEclEHMM C BR3KOii ,!IMCCMl-lAHMEti B M30IHYTOli 

KPYmOfi TPY6E 

AHHOT~UH~ -- PaccMarpnsaercn Tanara craunonapnoro ITO~HOCT~HJ pasenroro rennonepenoca npn 
X,MHHii.,,HOM TCWZHMM XMLlKOCTM C NOCTORHHblMM @)M3AWCKHMH CBOkTBSLMM B H30THYTOti Tpy6e 
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np~ tiamwiw MCTOYHHKOB wwi CT~KOB Tenna B MaTepMane cTeHKM. 06cymnamTcn TennoBbfe rpaHm- 

Hble yCflOBM8 LlR H30Tti)‘TOti Tpy6bl KpyrnOrO CeYeHMII C y’ii+TOM Te~JlOBblLleneHM~ 3a Pi&T Bn3KOk 

LWCCMnaUMM. MeTonoM TeOpMM R03MyL”eHMfi npOaHanM3lipOBaHbl CmYat4, KOrDa HOpManbHblfi 

rpallMeHT TCMnepaTypbl BHyTpeHjieti CTeHKM CYMTaeTCIl 3anaHHblM M nOCTORHHblM IT0 IIepMMeTpy. 

nOnyqeHbl t4 o6cymnatoTcn petueHMR nnn CpenHero wcna HyccenbTa M CKOPOCTM M3MetleHm Tew 

rrepaTypbr XH~KOCTII f3 HanpaBneHMH ocHoBHor0 moToKa. Mccnenyemx wwimbfe BR~KO~~ awxmaum 

Ha 3TM BenMYMHbl. npM o6cyxneHMM FlpOBOLIWOCb CpaBHeHMe pe3yJIbTaTOB ilJlfl Cny’lan M30rHyTOi? 

# npRMOii Tpy6bl. 


